Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Microbiol Spectr ; : e0469022, 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20241596

ABSTRACT

Patients with 2019 coronavirus disease (COVID-19) exhibit a broad spectrum of clinical presentations. A person's antimicrobial antibody profile, as partially shaped by past infection or vaccination, can reflect the immune system health that is critical to control and resolve the infection. We performed an explorative immunoproteomics study using microbial protein arrays displaying 318 full-length antigens from 77 viruses and 3 bacteria. We compared antimicrobial antibody profiles between 135 patients with mild COVID-19 disease and 215 patients with severe disease in 3 independent cohorts from Mexico and Italy. Severe disease patients were older with higher prevalence of comorbidities. We confirmed that severe disease patients elicited a stronger anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) response. We showed that antibodies against HCoV-229E and HcoV-NL63 but not against HcoV-HKU1 and HcoV-OC43 were also higher in those who had severe disease. We revealed that for a set of IgG and IgA antibodies targeting coronaviruses, herpesviruses, and other respiratory viruses, a subgroup of patients with the highest reactivity levels had a greater incidence of severe disease compared to those with mild disease across all three cohorts. On the contrary, fewer antibodies showed consistent greater prevalence in mild disease in all 3 cohorts. IMPORTANCE The clinical presentations of COVID-19 range from asymptomatic to critical illness that may lead to intensive care or even death. The health of the immune system, as partially shaped by past infections or vaccinations, is critical to control and resolve the infection. Using an innovative protein array platform, we surveyed antibodies against hundreds of full-length microbial antigens from 80 different viruses and bacteria in COVID-19 patients from different geographic regions with mild or severe disease. We not only confirmed the association of severe COVID-19 disease with higher reactivity of antibody responses to SARS-CoV-2 but also uncovered known and novel associations with antibody responses against herpesviruses and other respiratory viruses. Our study represents a significant step forward in understanding the factors contributing to COVID-19 disease severity. We also demonstrate the power of comprehensive antimicrobial antibody profiling in deciphering risk factors for severe COVID-19. We anticipate that our approach will have broad applications in infectious diseases.

2.
Vet Sci ; 9(6)2022 Jun 04.
Article in English | MEDLINE | ID: covidwho-1911734

ABSTRACT

In fish-based foods, one of the effects of inappropriate storage can be the formation of biogenic amines. Among these, histamine is considered one of the most toxic. The purpose of the present study is to assess the occurrence of histamine in fish-based pet foods, and to evaluate the changes in histamine content during storage at different temperatures. For the analysis, an LC-MS/MS method was used. Fifty-eight pet foods were purchased, and an aliquot of them was analyzed just after opening the packages. Histamine was detected in 12 samples and concentrations ranged from 1.5 to 30.1 mg/kg. The remaining of each positive sample was divided into seven subsamples. One of them was used as a control sample and kept at -20 °C, while the other six were exposed to different environmental conditions. Samples exposed to room temperature showed no significant changes in histamine levels, while samples exposed to high temperatures showed significant increases in histamine content. Finally, samples exposed to refrigerator temperature showed a slight decrease in histamine levels. Under the experimental conditions, the EU limit of 100 mg/kg established for fishery products was never exceeded. These results seem to indicate a low risk of histamine intoxication in cats fed fish-based pet food.

3.
Toxins (Basel) ; 13(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1376977

ABSTRACT

The detection of Ochratoxin A (OTA) in the milk of ruminants occurs infrequently and at low levels, but its occurrence may be higher in dairy products such as cheese. The aim of this study was to investigate the presence of OTA in cheeses purchased in the metropolitan city of Bologna (Italy) and the surrounding area. For the analysis, a LC-MS/MS method with a limit of quantification (LOQ) of 1 µg/kg was used. OTA was detected in seven out of 51 samples of grated hard cheese (concentration range 1.3-22.4 µg/kg), while it was not found in the 33 cheeses of other types which were also analysed. These data show a low risk of OTA contamination for almost all types of cheese analysed. To improve the safety of cheese marketed in grated form, more regulations on cheese rind, which is the part most susceptible to OTA-producing moulds, should be implemented or, alternatively, producers should consider not using the rind as row material for grated cheese. It would be interesting to continue these investigations particularly on grated hard cheeses to have more data to update the risk assessment of OTA in cheese, as also suggested by EFSA in its 2020 scientific opinion on OTA.


Subject(s)
Cheese/analysis , Food Contamination/analysis , Ochratoxins/analysis , Chromatography, Liquid , Italy , Tandem Mass Spectrometry
4.
Animals (Basel) ; 11(4)2021 Mar 31.
Article in English | MEDLINE | ID: covidwho-1232553

ABSTRACT

Antimicrobial resistance (AMR) represents one of the most critical challenges that humanity will face in the following years. In this context, a "One Health" approach with an integrated multidisciplinary effort involving humans, animals and their surrounding environment is needed to tackle the spread of AMR. One of the most common ways for bacteria to live is to adhere to surfaces and form biofilms. Staphylococcus aureus (S. aureus) can form biofilm on most surfaces and in a wide heterogeneity of environmental conditions. The biofilm guarantees the survival of the S. aureus in harsh environmental conditions and represents an issue for the food industry and animal production. The identification and characterization of biofilm-related proteins may provide interesting insights into biofilm formation mechanisms in S. aureus. In this regard, the aims of this study were: (i) to use proteomics to compare proteomes of S. aureus growing in planktonic and biofilm forms in order to investigate the common features of biofilm formation properties of different strains; (ii) to identify specific biofilm mechanisms that may be involved in AMR. The proteomic analysis showed 14 differentially expressed proteins among biofilm and planktonic forms of S. aureus. Moreover, three proteins, such as alcohol dehydrogenase, ATP-dependent 6-phosphofructokinase, and fructose-bisphosphate aldolase, were only differentially expressed in strains classified as high biofilm producers. Differentially regulated catabolites metabolisms and the switch to lower oxygen-related metabolisms were related to the sessile conformation analyzed.

5.
J Proteome Res ; 19(11): 4233-4241, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960284

ABSTRACT

Progress of the omics platforms widens their application to diverse fields, including immunology. This enables a deeper level of knowledge and the provision of a huge amount of data for which management and fruitful integration with the past evidence requires a steadily growing computational effort. In light of this, immunoinformatics emerges as a new discipline placed in between the traditional lab-based investigations and the computational analysis of the biological data. Immunoinformatics make use of tailored bioinformatics tools and data repositories to facilitate the analysis of data from a plurality of disciplines and help drive novel research hypotheses and in silico screening investigations in a fast, reliable, and cost-effective manner. Such computational immunoproteomics studies may as well prepare and guide lab-based investigations, representing valuable technology for the investigation of novel pathogens, to tentatively evaluate specificity of diagnostic products, to forecast on potential adverse effects of vaccines and to reduce the use of animal models. The present manuscript provides an overview of the COVID-19 pandemic and reviews the state of the art of the omics technologies employed in fighting SARS-CoV-2 infections. A comprehensive description of the immunoinformatics approaches and its potential role in contrasting COVID-19 pandemics is provided.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Proteomics , COVID-19 , Coronavirus Infections/therapy , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Host-Pathogen Interactions/immunology , Humans , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2
6.
J Transl Med ; 18(1): 358, 2020 09 21.
Article in English | MEDLINE | ID: covidwho-781481

ABSTRACT

COVID-19 caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan (Hubei province, China) during late 2019. It has spread across the globe affecting nearly 21 million people with a toll of 0.75 million deaths and restricting the movement of most of the world population during the past 6 months. COVID-19 became the leading health, economic, and humanitarian challenge of the twenty-first century. In addition to the considerable COVID-19 cases, hospitalizations, and deaths in humans, several cases of SARS-CoV-2 infections in animal hosts (dog, cat, tiger, lion, and mink) have been reported. Thus, the concern of pet owners is increasing. Moreover, the dynamics of the disease requires further explanation, mainly concerning the transmission of the virus from humans to animals and vice versa. Therefore, this study aimed to gather information about the reported cases of COVID-19 transmission in animals through a literary review of works published in scientific journals and perform genomic and phylogenetic analyses of SARS-CoV-2 isolated from animal hosts. Although many instances of transmission of the SARS-CoV-2 have been reported, caution and further studies are necessary to avoid the occurrence of maltreatment in animals, and to achieve a better understanding of the dynamics of the disease in the environment, humans, and animals. Future research in the animal-human interface can help formulate and implement preventive measures to combat the further transmission of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/veterinary , Pandemics/veterinary , Pneumonia, Viral/veterinary , Zoonoses/transmission , Animal Husbandry , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , Cats , Coronavirus/classification , Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Dogs , Genome, Viral , Humans , Mink/virology , Netherlands/epidemiology , Occupational Exposure , Pets/virology , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Translational Research, Biomedical , Zoonoses/epidemiology
7.
Microbes Infect ; 22(10): 592-597, 2020.
Article in English | MEDLINE | ID: covidwho-744191

ABSTRACT

The Envelope (E) protein of SARS-CoV-2 is the most enigmatic protein among the four structural ones. Most of its current knowledge is based on the direct comparison to the SARS E protein, initially mistakenly undervalued and subsequently proved to be a key factor in the ER-Golgi localization and in tight junction disruption. We compared the genomic sequences of E protein of SARS-CoV-2, SARS-CoV and the closely related genomes of bats and pangolins obtained from the GISAID and GenBank databases. When compared to the known SARS E protein, we observed a significant difference in amino acid sequence in the C-terminal end of SARS-CoV-2 E protein. Subsequently, in silico modelling analyses of E proteins conformation and docking provide evidences of a strengthened binding of SARS-CoV-2 E protein with the tight junction-associated PALS1 protein. Based on our computational evidences and on data related to SARS-CoV, we believe that SARS-CoV-2 E protein interferes more stably with PALS1 leading to an enhanced epithelial barrier disruption, amplifying the inflammatory processes, and promoting tissue remodelling. These findings raise a warning on the underestimated role of the E protein in the pathogenic mechanism and open the route to detailed experimental investigations.


Subject(s)
COVID-19/metabolism , Membrane Proteins/chemistry , Nucleoside-Phosphate Kinase/chemistry , SARS-CoV-2/chemistry , Tight Junctions/chemistry , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Animals , COVID-19/genetics , Chiroptera/virology , Databases, Genetic , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Dynamics Simulation , Nucleoside-Phosphate Kinase/genetics , Nucleoside-Phosphate Kinase/metabolism , Pangolins/virology , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Tight Junctions/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
8.
Microbes Infect ; 22(4-5): 182-187, 2020.
Article in English | MEDLINE | ID: covidwho-626674

ABSTRACT

Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies.


Subject(s)
Betacoronavirus/metabolism , Computational Biology/methods , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Viral Envelope Proteins/immunology , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Coronavirus Envelope Proteins , Epitope Mapping , Gene Expression Regulation, Viral , Humans , Models, Molecular , One Health , Pandemics , Phylogeny , Protein Conformation , SARS-CoV-2 , Sequence Alignment , Sequence Analysis, Protein
9.
Microbes Infect ; 22(4-5): 188-194, 2020.
Article in English | MEDLINE | ID: covidwho-52542

ABSTRACT

Several research lines are currently ongoing to address the multitude of facets of the pandemic COVID-19. In line with the One-Health concept, extending the target of the studies to the animals which humans are continuously interacting with may favor a better understanding of the SARS-CoV-2 biology and pathogenetic mechanisms; thus, helping to adopt the most suitable containment measures. The last two decades have already faced severe manifestations of the coronavirus infection in both humans and animals, thus, circulating epitopes from previous outbreaks might confer partial protection from SARS-CoV-2 infections. In the present study, we provide an in-silico survey of the major nucleocapsid protein epitopes and compare them with the homologues of taxonomically-related coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Protein sequence alignment provides evidence of high sequence homology for some of the investigated proteins. Moreover, structural epitope mapping by homology modelling revealed a potential immunogenic value also for specific sequences scoring a lower identity with SARS-CoV-2 nucleocapsid proteins. These evidence provide a molecular structural rationale for a potential role in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies.


Subject(s)
Betacoronavirus/metabolism , Coronavirus/classification , Coronavirus/genetics , Epitopes , Nucleocapsid Proteins/metabolism , Amino Acid Sequence , Animals , Betacoronavirus/genetics , Computational Biology , Computer Simulation , Coronavirus Nucleocapsid Proteins , Gene Expression Regulation, Viral/immunology , Humans , Models, Molecular , Nucleocapsid Proteins/genetics , Phosphoproteins , Phylogeny , Protein Conformation , Protein Domains , SARS-CoV-2 , Species Specificity
10.
Microbes Infect ; 22(4-5): 218-220, 2020.
Article in English | MEDLINE | ID: covidwho-11184

ABSTRACT

Outside the Hubei province, China, the mild form of infection and the progressive recover of the COVID-19 patients suggest the intervention of "unconventional" biological mechanisms worthy of attention. Based on the high-homology between the Spike protein epitopes of taxonomically-related coronaviruses, we hypothesized that past contact with infected dogs shield humans against the circulating SARS-CoV-2. Elseways, the recurrent virus exposure over a short time-lapse might result in the Antibody Dependent Enhancement, triggering the violent immune reaction responsible for the severe clinical outcomes observed in the Hubei province. Nevertheless, further experimental studies are desired for a confidential evaluation of the postulated hypotheses.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibody-Dependent Enhancement , Antigens, Viral/chemistry , Antigens, Viral/immunology , Betacoronavirus/classification , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/veterinary , Dog Diseases/virology , Dogs , Epitopes/chemistry , Epitopes/immunology , Humans , Immunity , One Health , Pandemics , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL